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Abstract. Dynamic tensile measurements have been carried out on a ternary metallic alloy,
Pt60Ni15P25, below and close to the calorimetric glass transition temperature. The storage and
loss tensile moduli, as well as the complex and dynamic tensile viscosity, are found to obey the
time–temperature superposition principle in this temperature range. Structural relaxation times
were measured from the position of the maximum in the loss modulus and from the limiting low-
frequency value of the complex viscosity and its real component. The three quantities display
Arrhenius temperature dependences with similar activation energies and indicate that the metallic
alloy has an intermediate fragility strength in the general classification scheme for glass-forming
liquids. The master curves obtained by scaling the measured dynamic properties by the appropriate
relaxation time reflect a very broad distribution of microscopic relaxation times. A discrete spectrum
of relaxation frequencies has been calculated from the master curve for the storage modulus
assuming a superposition of intrinsic exponential responses. The resulting distribution is broad and
skewed towards high frequencies, a characteristic feature of heterogeneous relaxation. It is found
that the high-frequency end of the relaxation spectrum controls the amplitude, whereas the low-
frequency end determines the width of the overall macroscopic response. The results presented
here indicate a very high degree of dynamic heterogeneity in the tensile relaxation process for
supercooled Pt60Ni15P25.

1. Introduction

There is now an extensive body of experimental data to demonstrate that a wide range of
chemically disparate materials can be quenched below the freezing temperatureTf into a
stable amorphous state which is devoid of long-range ordering. In each of these materials, the
viscosity rises very rapidly belowTf until, eventually, viscous flow ceases on the timescale of
the experimental probe within a narrow temperature interval centred around the glass transition
temperatureTg.

In order to achieve some semblance of order among the vast range of glass-forming
substances, a simple scheme was developed by Laughlin and Uhlmann [1], and later
popularized by Angell [2], for classifying the materials according to the temperature
dependence of the viscosity or some other structural relaxation time. A glass former with
an Arrhenius temperature dependence of the viscosity or a relaxation time betweenTf and
Tg is referred to as a strong liquid and one showing considerable deviation from Arrhenius
behaviour is called a fragile liquid.
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The magnitude of the departure from Arrhenius behaviour is quantified by a fragility
parameterm defined as [3,4]

m = d log10 τ(T )

dTg/T

∣∣∣∣
T=Tg

(1)

whereτ(T ) is a characteristic temperature-dependent relaxation time. The lower limit of
the fragility parameter corresponding to strong liquids is≈16, whereas extremely fragile
liquids havem > 100. B̈ohmer and co-workers have compiled the fragility parameters for
approximately 70 glass formers consisting of simple and complex covalent molecular liquids,
polymers, ionic melts, oxides and alcohols. However, no data on metallic alloys have been
included in this compilation.

Methods of preparing thin films and bulk metallic glasses are now fairly routine [5].
Most of these metallic glasses consist of ternary and quarternary alloys. Among the broad
classes of glass formers, metallic alloys possess one of the simplest microstructures and, thus,
present an ideal realistic system for which to compare the trends and predictions derived
from theoretical models of the glass transition, such as mode-coupling theory [6], and from
computer simulations of spherical particles. However, the main body of theoreticians in the
field of supercooled condensed matter still lack a greater degree of awareness of the research
conducted by metallurgists in this area.

In this paper, we present experimental results for a ternary metallic alloy, Pt60Ni15P25,
which indicate that it has some bulk-averaged characteristics which are similar to those
of several supercooled polymeric and molecular organic liquids. We report dynamic
measurements of the tensile storage and loss moduli of thin ribbons of Pt60Ni15P25 near
and below its glass transition temperatureTg. The tensile complex viscosity and its real
component (the dynamic viscosity) were also calculated from these results. From the
frequency dependences of the complex and dynamic viscosities, constant limiting low-
frequency viscosities which are proportional to structural relaxation times can be determined.
The frequency of maximum loss in the tensile modulus also provides another relaxation time.
The results on the temperature dependences of these relaxation times are an important addition
to this field. Such results for various glass-forming systems are fervently sought since the
study of the rapid increase in timescales asTg is approached lies at the heart of the research
into supercooled liquids and glasses.

From the temperature variation of the relaxation times for Pt60Ni15P25, we have also
calculated the fragility indexm in order to supplement the compilation of such data in ref-
erence [4]. We find that the amorphous alloy is an intermediate glass, lying between the strong
and fragile extremes in the classification scheme described earlier. It is also found that a high
degree of dynamic heterogeneity dominates the relaxation in this glassy alloy.

2. Experimental method

Amorphous ribbons of Pt60Ni15P25 (concentrations in at.%) were prepared by rapid quenching
of the melt using a single-roller melt-spinning technique [7]. The ribbons have thicknesses
of 0.024± 0.004 mm and widths of 1.02± 0.03 mm. All of the samples used in this study
came from this single production batch. The glass transition region can be detected from
differential scanning calorimetry (DSC) scans as an endothermic change in the heat flow curve
during heating of the metallic glass from low temperatures. We defineTg as the temperature
corresponding to the mid-point of the endothermic transition. The calorimetricTg will be
denoted asT cg . At a scanning rate of 20 K min−1, T cg = 485± 2 K. The crystallization
(exothermic) peak maximum at this heating rate occurs atTx = 550 K with an onset at≈543 K.
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Thus, the supercooled liquid region extends over≈55 K. The glass transition temperature still
lies within the range given above when the heating rate is dropped to 10 and 5 K min−1.

Tensile dynamic measurements were carried out using a Rheometrics Solids Analyzer
(RSA-II) in which the sample is coupled between an actuator and a transducer. The actuator
imposes an oscillatory deformation upon the material, whereas the transducer measures the
resultant force generated by the sample deformation. The electrical current required to maintain
the axial position of the transducer is proportional to this force. Sample displacement is
determined from measured actuator and transducer axial displacements. The angular frequency
range of the RSA-II isω = 10−3 to 102 rad s−1. In the present study, a sinusoidal strain with
a constant amplitude of 4.5 × 10−4, which lies within the linear viscoelastic region, was
employed.

Measurements of the dynamic tensile storage(E′(ω)) and loss(E′′(ω)) moduli were
made just belowT cg from 460 K to 480 K with a step of 5 K. AtT > T cg , the samples
become too ‘soft’ in the sense that they rapidly extend to the machine’s extension limit (4
mm) before the measurement process is complete. At each measurement temperature, the
samples were equilibrated for at least one hour. This annealing step is required to eliminate
any fast initial relaxation process due to the change in temperature and for the system to reach
internal metastable equilibrium. The annealing process is necessary to obtain reproducible
results when the samples are changed. All relaxation curves shown in this study have been
averaged over at least ten individual measurements using different samples.

3. Experimental results

3.1. Tensile moduli

The tensile moduliE′(ω) andE′′(ω) are shown in figure 1 for the range of temperatures
studied. Observe the rapid change in relaxation times over the 20 K interval directly below
T cg . This change is quantified by measuring the positionωmax of the peak maximum in
E′′(ω) for T = 465 K to 480 K which falls within the experimental frequency window.
The temperature dependence ofωmax is plotted in an Arrhenius plot in figure 2. A straight line
can be fitted through the four data points with an activation energy ofEa = 625±10 kJ mol−1

(149± 2 kcal mol−1) and a prefactor ofω0 = 1.81× 1068 rad s−1. From this Arrhenius
equation,ωmax for the lowest temperature atT = 460 K was calculated and is also shown
in figure 2. As can be seen, the relaxation time changes by approximately three orders of
magnitude over the narrow temperature interval.

Since the measurement ofωmax lies very close toT cg , we expect the Arrhenius equation
to apply atT cg . Hence, it is possible to calculate the so-called fragility parameter [4] defined
in equation (1). For the Pt60Ni15P25 alloy, m = Ea/(RT

c
g ln 10) = 67.3, whereR is the

gas constant. As stated earlier, strong liquids correspond tom < 30 whereas extremely
fragile liquids havem > 100. Thus, the metallic alloy lies somewhere intermediate between
the two extremes and has a fragility strength that is similar to several organic liquids such as
dibutylphthalate, tri-α-naphthylbenzene, 1, 3-butanediol and 1, 4-cis-polyisoprene which have
m in the range of 60 to 70 [4].

3.1.1. Time–temperature superposition.BothE′(ω) andE′′(ω) fall onto master curves when
plotted against frequency scaled byωmax(T ) as shown in figures 3 and 4 respectively. The
shifted data points now extend over approximately eight orders of magnitude. There is a
systematic drop in the storage modulus with increasing temperature on the high-frequency
side,ω/ωmax > 1. This decrease is more clearly evident for the loss modulus. We note that
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Figure 1. The tensile storage(E′(ω)) and loss(E′′(ω)) moduli for Pt60Ni15P25 below T cg =
485± 2 K from T = 460 K to 480 K. The precision of the results is shown for the highest
temperatureT = 480 K where the error bars denote +/− the standard deviation.
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Figure 2. The temperature dependence of the positionωmax of the peak maximum inE′′(ω). The
solid line is a linear regression through the four experimental data points fromT = 465 to 480 K.
The point atT = 460 K or 1000/T = 2.174 K−1 was calculated from this linear relation.

a common curve can also be obtained if any one of theE′(ω) (or E′′(ω)) curves are fixed
and the remaining temperature curves are shifted to superpose onto the selected curve, i.e. the
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Figure 3. The result of plotting the storage modulus against angular frequency scaled byωmax(T ).
The solid curve is the fit given by equation (3).
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Figure 4. The result of plotting the loss modulus against angular frequency scaled byωmax(T ).

time–temperature superposition principle applies. This means that the common curves shown
in figures 3 and 4, at least on the low-frequency side (ω/ωmax < 1), are the relaxation curves
for the temperature corresponding toωmax= 1 rad s−1, which according to figure 2 occurs at
T = 478 K.

It is now well documented that relaxation functions of many supercooled liquids can be
reasonably well described by the empirical Kohlrausch–Williams–Watts (KWW) or stretched
exponential function [8]:

φ(t) = A exp

[
−
(
t

τ

)β]
0< β 6 1 (2)
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whereφ(t) is a relaxation function,A is an adjustable parameter,τ is a characteristic relaxation
time andβ is a measure of the departure from exponential relaxation (β = 1). We have
attempted to fit the master curve for the storage modulus with the above relation. It is obvious
from the shape of this curve in figure 3 that a smaller stretching parameterβ is required at low
frequencies(ω < 0.03ωmax) than at higher frequencies. A superposition of two such equations
which provides a reasonably good fit to the master curve is given by

E′M

(
ω

ωmax

)
= 4.6× 1010 exp

[
−0.60

(
ωmax

ω

)0.58
]

+ 2.1× 1010 exp

[
−1.8

(
ωmax

ω

)0.17
]

+E0 (3)

whereE0, the discrete contribution to the spectrum for viscoelastic solids asω → 0, was
chosen to be 4.0× 107 Pa from the trend of the decay of the experimental data. The master
curve fitE′M(ω/ωmax) is also shown in figure 3. The first term in the above equation fits the
shape of the initial part of the relaxation, while the second term fits the tail(ω < 0.03ωmax).
Young’s modulusE∞ = E′(ω→∞), estimated fromE′M(ω/ωmax), is 6.63× 1010 Pa.

In reference [4] a correlation between the fragility index and the stretching parameter
given by

m ≈ 250− 320β (4)

has been found to apply for a wide variety of amorphous materials. Insertingβ = 0.58
from equation (3) into equation (4) givesm = 64.4 in agreement with the result obtained
from ωmax(T ). Usingβ = 0.17 givesm = 196 which indicates extreme fragility. We note,
however, that the data for the low-frequency end of the spectrum are less precise than those
for the higher-frequency end as shown for example in figure 1 forT = 480 K. The organic
liquids mentioned previously which have a similar fragility strength to Pt60Ni15P25 haveβ in
the range 0.50 to 0.60 [4].

3.1.2. The spectrum of relaxation frequencies.The main kinetic feature of relaxation in
many supercooled liquids is dynamic heterogeneity, characterized by both a broad distribution
of local relaxation times and a non-uniform spatial distribution of such times [9–13]. In order
to obtain an estimate of the spread of relaxation times for the supercooled Pt60Ni15P25 alloy,
we have calculated an approximate distribution of relaxation frequencies for the master curve
of the storage modulus by assuming a superposition of exponentially decaying microscopic
processes, that is we have approximatedE′M by a sum of exponentials:

E′M

(
ω

ωmax

)
=

N∑
i=1

Hi exp
[
−ωi
ω

]
(5)

whereHi and ωi are the amplitude and relaxation frequency of the individual intrinsic
responses. The assumption inherent in equation (5) is reasonable considering the results of
recent multi-dimensional nuclear magnetic resonance [11, 12] and time-dependent solvation
spectroscopy [11,13] experiments which have demonstrated that the non-exponential primary
relaxation in a variety of supercooled molecular and polymeric organic liquids is due to a
broad distribution of singly decaying intrinsic processes, each with its own characteristic time
constant. This form of relaxation is often referred to as the heterogeneous limit [11], as opposed
to the homogeneous extreme where the individual microscopic processes are proportional to
the macroscopic response function and the relaxation spectrum is represented by a Dirac delta
distribution.
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Figure 5. The frequency probability density for the master curveE′M(ω/ωmax) shown in figure 3.
The inset shows the same distribution on a linear scale for the ordinate.

UsingN = 101 and log10ωi equally spaced in the interval [−10, 10], equation (5) was
solved using the general linear least-squares algorithm provided inNumerical Recipes[14].
The resulting probability density of relaxation frequenciesHi(log10ωi) is shown in figure 5.
We find that the truncated relaxation spectrum in the range log10ωi ∈ [−4, 4] is already
sufficient to fit E′M with a precision>99.9%. The probability density in figure 5 has
the general characteristics observed for several supercooled organic liquids mentioned in
references [11–13], i.e. a very broad asymmetrical distribution which drops rapidly on the
low-frequency side of the maximum and declines more gently on the high-frequency side.
These features are associated with a high degree of dynamic heterogeneity. One difference
between the distribution for Pt60Ni15P25 and those for the aforementioned organic liquids is the
development of a ‘step’ and slower decay on the low-frequency side of the main peak starting
at log10(ωi/ωmax) ≈ −1.6. The development of this broader distribution in the relaxation
spectrum coincides with the change in the stretching parameterβ from 0.58 to 0.17 in the
decay ofE′M .

We have attempted to analyse the contribution of different sections of the relaxation
spectrum to the overall response functionE′M . This was done by first fixing the lower limit
of the summation in equation (5) at�min = log10(ωi/ωmax) = −10 and selectively truncating
the upper limit�max= log10(ωi/ωmax) at decreasing frequencies. The result of varying�max

is shown in figure 6(a). The main consequence of not including the high-frequency end of the
probability density in the calculation of the macroscopic response is to reduce the height of the
overall curveE′(ω/ωmax). There is an especially large drop in the amplitude in going from
�max = −1 to−2. When�max = −2, only the secondary-step portion of the low-frequency
side of the relaxation spectrum is contributing to the overall response and, hence, the resulting
relaxation curve has a stretching parameterβ = 0.17 as can be seen in figure 6(a).

Next�max was fixed at 10 and�min was successively increased in order to investigate the
consequence of removing the low-frequency constants from the macroscopic response. The
resulting relaxation curves are shown in figure 6(b). Note that when�min = −4, the relaxation
curve is not distinguishable fromE′M on the scale shown in figure 6(b). However, on going
from�min = −4 to−3, the tail of the overall relaxation becomes less broad. Further increase
of �min results in a gradual increase of the stretching parameterβ for the low-frequency side
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Figure 6. The macroscopic relaxation curves for the storage modulus obtained by truncating the
relaxation spectrum shown in figure 5 on (a) the high-frequency side and (b) the low-frequency
side as described in section 3.1.2. The thick solid curves in (a) and (b) are the master curve fitsE′M
shown in figure 3.

of the relaxation toβ = 0.58 at�min = −1. For�min > −1 the value ofβ does not change
from 0.58 but the amplitude of the macroscopic function decreases as increasingly more of the
high-frequency constants are not included in equation (5).

In summary, the high-frequency side of the frequency probability density controls the
amplitude of the overall response, whereas the low-frequency side determines the width of the
tail of this macroscopic relaxation function.

3.2. The loss tangent

A measure of the ratio of energy loss to energy stored in a cyclic deformation is provided by
the loss tangent,

tanδ = E′′(ω)
E′(ω)

. (6)

The frequency dependence of tanδ is shown in figure 7. As can be seen, the main peak
in tanδ, corresponding to a region of maximum loss, moves towards higher frequencies as
the temperature increases. For the lowest temperature of 460 K, this maximum does not
lie within the experimental frequency window. A shoulder or secondary maximum is also
clearly observable on the lower-frequency side within our frequency window for the higher
temperatures ofT = 475 K and 480 K. The height of this secondary peak is lower than that of
the main loss peak. Such characteristics are found to be similar in shape to the tanδ curves for
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Figure 7. The tanδ = E′′(ω)/E′(ω) curves for the temperatures investigated. Observe the
existence of a secondary maximum on the low-frequency side of the main peak for the two highest
temperatures.

lightly cross-linked amorphous polymers [15]. For the polymers, the subsidiary maximum at
the lower frequency is attributed to losses incurred in entanglement slippages. For the metallic
alloy, we do not know what gives rise to the secondary maximum, except to note that it signals
a change in the dissipative mechanism from that at higher frequencies. It is possible that the
shorter loss peak, due to its position at low frequencies, is associated with viscous cooperative
rearrangements of large atomic regions.

3.3. Complex tensile viscosity

The frequency dependence of the complex tensile viscosityη∗(ω) is shown in figure 8 for all
temperatures investigated. At lowω, η∗(ω) reaches a limiting constant valueη∗(0). As ω
increases, there is a gradual drop in the viscosity until it becomes inversely proportional toω

at high frequencies as shown by the solid line in figure 8. The frequency at which the viscosity
begins to decrease fromη∗(0) increases with temperature.

The shape of theη∗(ω) curves in figure 8 is the same as the variation of the shear viscosity
ηs with increasing shear rate ˙γ in polymers [16] and metallic alloys [17]. The constant low
γ̇ -value ofηs is called the Newtonian viscosity and the high- ˙γ region in whichηs drops with
increasing ˙γ is referred to as the non-Newtonian regime. Experimental data for polymers [16]
indicate thatηs at high shear rates has a power-law dependence on ˙γ , i.e.ηs ∝ γ̇−n with n < 1
and commonlyn ≈ 0.8. It has recently been found thatn = 1 for a quarternary metallic alloy,
Pd40Ni10Cu30P20, near the glass transition [17]. Our results for Pt60Ni15P25 at high frequencies
whereη∗(ω) ∝ ω−1 are in accord with the behaviour for the quarternary alloy. It would be
interesting to examine whethern = 1 for all glass-forming metallic alloys—that is, whether
these materials form a special limiting case due to their simpler microstructure.

Theories of non-Newtonian flow in polymers have proposed that the decrease in apparent
viscosity with increasing shear rate is due to a decrease in the concentration of intermolecular
entanglements [18]. In the Newtonian regime a steady state is achieved between the formation
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Figure 8. The frequency dependence of the complex tensile viscosityη∗(ω) for T = 460 K to
480 K. At high frequenciesη∗(ω) becomes inversely proportional toω as shown by the solid line.

and break-up of entanglements. Above a critical shear rate, however, the transit time during
which molecular segments are close enough to become entangled as they shear past each other
becomes shorter than the time required to form the entanglement and, as a consequence, the
apparent viscosity drops. In the case of metallic alloys, computer simulations of Lennard-Jones
particles [19] suggest that for a given temperature, there is a critical shear rate above which
structural reorganization is dominated by the velocity profile imposed by the shearing action.
This results in the formation of layers in the liquid along the direction of shear which slide
past one another during the shearing process, thus facilitating flow and reducing the apparent
viscosity. At higher temperatures, due to the greater degree of kinetic motion in the system, a
larger shear rate is required to force preferential ordering along the lines of shear.

In figure 9 is plotted the temperature dependence ofη∗(0) for Pt60Ni15P25 fromT = 465 K
to 480 K at which temperatures this limiting value can be determined from within the
experimental window. A linear regression through the four data points gives an activation
energy ofEa = 600± 10 kJ mol−1 (143± 2 kcal mol−1) and a prefactor of 2.0× 10−55 Pa s.
This activation energy is approximately equal to the activation energy for the position,ωmax,
of the tensile loss peaks discussed in section 3.1. From the above Arrhenius relation,η∗(0)
for T = 460 K was calculated and is also shown in figure 9. The viscosityη∗(0) changes
by approximately three orders of magnitude over the 20 K interval belowT cg in accordance
with ωmax(T ). We also plot in figure 9 the limiting zero-frequency valueη′(0) of the real
componentη′(ω) of η∗(ω). As can be seen, there is an approximately systematic decrease in
η′(0) compared toη∗(0) at all temperatures investigated. The temperature dependence ofη′(0)
can also be fitted with an Arrhenius relation with an activation energy of 610± 10 kJ mol−1

and a prefactor of 5.9× 10−57 Pa s.
The fragility parameterm of equation (1) atT cg , calculated using the temperature

dependence ofη∗(0), is 64.6. This value is close to the value of 67.3 determined from the
Arrhenius relation forωmax and approximately equal to the fragility parameter (m = 64.4)
calculated from equation (4) using the stretching parameterβ = 0.58 from equation (3).
The fragility parameter calculated using the activation energy forη′(0) is 65.7 which is also
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Figure 9. An Arrhenius plot of the constant limiting low-frequency value,η∗(0) andη′(0), of
the complex tensile viscosity and its real component respectively. The solid and dashed lines are
linear regressions through the experimental data points fromT = 465 to 480 K only. The points
for T = 460 K were calculated from the respective linear relations.

in agreement with the above values. If instead the glass transition temperatureT vg is taken
to be the temperature at which the viscosity is 1012 Pa s, then the Arrhenius relation for
η∗(0) givesT vg = 470 K andm = 66.7, and the corresponding values from the temperature
dependence ofη′(0) areT vg = 467 K andm = 68.2. In summary, the fragility parameter for
Pt60Ni15P25 calculated from our results ism = 66± 3. Previously, Chen [20] estimated the
temperature dependence of the viscosity of Pt60Ni15P25 nearT cg by measuring rates of thermal
transformation. For a heating rate of 20 K min−1, T cg = 482 K for his sample. The fragility
index calculated from his data at this temperature ism = 50 which is lower than our estimate.
However, atT vg (defined as above), which occurs at 463 K according to his data, the value of
m calculated from his parameters is 64 which is in much better agreement with our result.

Just as in the case of the shear viscosityηs(γ̇ ) which falls onto a master curve when ˙γ is
scaled by the Newtonian viscosityηs(0) [16,17], our results for the tensile complex viscosity
at various temperatures also fall onto a common curve when the angular frequency is scaled
by η∗(0) as shown in figure 10. We find that the entire master curve forη∗(ω) can be fitted
reasonably well with the modified Maxwell equation:

η∗(ω)
η∗(0)

= 1

(1 +Cω2τ 2)β
′ 0< β ′ 6 1 (7)

whereτ is a temperature-dependent relaxation time which we have set equal toτ(T ) =
η∗(0)(T )/E∞ with E∞ taken to be 6.63× 1010 Pa as estimated from equation (3). We have
included the shift parameterC in equation (7) in order to move the calculated curve along the
abscissa since we have fixedτ as above. In a general fit, the parameterC can be incorporated
into τ and only the two parametersτ andβ ′ need to be determined. We find that the master
curve forη∗(ω) can be fitted very well withβ ′ = 0.48 andC = 2.5 as shown by the solid
curve in figure 10.

For the Maxwell model having a single time constant,β ′ = 0.5 for the complex viscosity.
At first glance, the fit to our data withβ ′ = 0.48 would suggest that the distribution of relaxation
times for the alloy is very narrow in contrast to the discussion in the previous sections. This,
however, is a wrong interpretation. It is an error to compare the fitting parameterβ ′ = 0.48
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Figure 10. The master plot for the complex tensile viscosity curves when the angular frequency is
scaled byη∗(0)(T ). The solid curve is the fit given by equation (7) withC = 2.5 andβ ′ = 0.48.
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Figure 11. The master curve for the dynamic viscosityη′(ω) at different temperatures when the
angular frequency is scaled byη′(0)(T ). The solid curve is the fit given by equation (7) with
C = 16.0 andβ ′ = 0.64. The dashed curve is the Maxwell relation withC = 16.0 andβ ′ = 1.

with the Maxwell exponent forη∗(ω) because the zero-frequency value for the real,η′(ω),
and imaginary,η′′(ω), components ofη∗(ω) are not equal for the alloy, as implied in figure 9,
unlike the case for the Maxwell model. Only the experimental results forη′(ω) or η′′(ω) can
be compared directly with the Maxwell model.

In figure 11 we plotη′(ω) against angular frequency with both quantities scaled by
η′(0)(T ). The data fall onto a master curve as forη∗(ω). We have used equation (7) with
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η∗(ω) replaced byη′(ω) andη∗(0) replaced byη′(0) to fit the common curve. The parameters
C = 16.0 andβ ′ = 0.64 are found to provide a reasonably good fit to the data as shown by
the solid curve in figure 11. In the case of the Maxwell model,β ′ = 1 for η′(ω) [21]. This is
also shown by the dashed curve in figure 11. It is now quite clear that the master curve for the
dynamic viscosityη′(ω) reflects a broad distribution of relaxation times rather than a single
time constant.

4. Summary

We have presented dynamic measurements of the elastic and viscous components of the tensile
modulus, and the complex and dynamic tensile viscosities, of Pt60Ni15P25 over a 20 K interval
below and close to the calorimetric glass transition temperatureT cg = 485± 2 K. From these
data, three temperature-dependent relaxation times have been measured: (i) the positionωmax

of the maximum in the loss peak of the tensile modulus, (ii) the limiting low-frequency value
η∗(0) of the complex tensile viscosity and (iii) the corresponding valueη′(0) for the dynamic
viscosity. The three quantities have Arrhenius temperature dependences with approximately
equal activation energies and indicate a change of relaxation times of approximately three
orders of magnitude over the narrow temperature range. From the temperature dependences
of ωmax, η∗(0) andη′(0), the supercooled Pt60Ni15P25 alloy is shown to have an intermediate
fragility strength with a fragility index ofm = 66± 3 atT cg or atT vg where the viscosity is
1012 Pa s.

The time–temperature superposition principle or thermorheological simplicity is found to
apply for the storage and loss moduli, as well as the complex and dynamic viscosities, over
the temperature interval investigated. Thermorheological simplicity has often been connected
with Arrhenius temperature dependences of relaxation times [22]. Our results agree with this
general trend. The resulting master curves after superposition reflect a broad distribution of
intrinsic relaxation times. In order to obtain an estimate of the width of the distribution of
timescales for the amorphous alloy, we have assumed that the master curve for the storage
modulus arises from the superposition of exponentially decaying microscopic processes. The
resulting discrete spectrum of relaxation times is very broad and asymmetric, being skewed
towards higher frequencies. These are characteristic features of heterogeneous relaxation
which have been observed previously for molecular and polymeric organic liquids [11–13]. It
is found that approximately eight decades in the probability density of frequencies are required
to reproduce the master curve for the storage modulus. Our results certainly indicate a very high
degree of dynamic heterogeneity in the tensile relaxation process of the deeply supercooled
Pt60Ni15P25 alloy.
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